

Chip bias current and measure voltage in response to changes in resistance or capacitance across sensor

APPLICATION Resistance, Capacitance, Temperature, Water TDS, etc.

Chip bias voltage to WE-RE and measure current across electrochemical sensor

Heavy Metal, Glucose, Ketone, Uric acid, Cortisol, Hepatitis B Virus, Chemical Substances, Biomarkers, etc.

Chip bias voltage and measure voltage in response to changes in resistance across sensor (open circuit potential)

pH, Force, Strain, Ion Elements such as Na+, K+,Ca2+,Mg2+, Biomarkers, etc.

■ SIC4340

NFC type 2 tag IC with built-in current source and ADC for galvanostat measurement.

C D	EC			ue.
	445		ונשו	

Communication Interface

Product Form Factor

Biasing Current Range

Bias Wave Form

Voltage Measurement Range

Measurement Accuracy

Application Example

Voltage Limiter

Multiplexing

SIC4340

NFC Type 2 Tag

QFN, Sawn Wafer with Bump

 $1 - 63 \mu A$ with $1 \mu A$ / Step 8 - 504 μA with 8 μA / Step

• DC

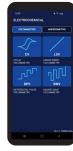
Square Wave with Selectable Frequency 300 Hz - 50 kHz

0.2 to 1.2 V

± 1.2 mV

1.28 V

3 Channels


Resistive Sensor Capacitive Sensor Temperature Sensor Water TDS (Total Dissolved Solid)

DEVELOPMENT KIT

SIC4341

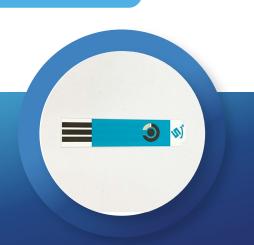
SIC4343

SUPPORT MATERIAL

- Demo iOS/android application
- Reference PCB design and schematic diagram
- Reference antenna and antenna design tool

I SIC4341

NFC Type 2 tag IC with built-in ADC and potentiostat sensor interface for electrochemical measurement


I SIC824B

Potentiostat sensor module with bluetooth® 5.2 for electrochemical measurement

SPECIFICATIONS	SIC4341 Potentiostat Sensor Interface	SIC824B Potentiostat Sensor Module
Communication Interface	NFC Type 2 Tag	Bluetooth® 5.2
Product Form Factor	QFN, Sawn Wafer with Bump	PCB
Bias Voltage Range	-0.8 to +0.8 V	- 1.6V to 1.6V (1.6V Dynamic Range)
Bias Voltage Resolution	5 mV/Step	5 mV/Step
Current Measurement Range	Selectable ± 2.5 µA ± 20 µA	Hardware fix Customizable Maximum ± 500 µA
Pin Configuration	Configurable WE, RE, CE	Fixed Position
Measurement Accuracy	± 5 nA for ± 2.5 μA Range ± 20 nA for ± 20 μA Range	± 0.1% of Current Range
Compatible Analysis Technique	Amperometry Voltammetry	Amperometry Voltammetry Open Circuit Potential (OCP)
Application Example	Chemical Sensor Biochemical Sensor	Chemical Sensor Biochemical Sensor Potentiometric Sensor

Screen-Printed Electrode (SPE) on PET Substrate 3 Electrodes Including;

- Working Electrode: Graphene (Size: Diameter 3 mm)
- Counter Electrode: Graphene
- Reference Electrode: Ag/AgCl

SIC4343

NFC type 2 tag IC with built-in DACs and ADC for voltage measurement which can be configured to single-ended or differential-ended mode.

Single Ended Voltage Sensor Interface Chip Differential Ended Voltage Sensor Interface Chip

Communication Interface	NFC Ty	NFC Type 2 Tag			
Product Form Factor	QFN, Sawn wa	QFN, Sawn wafer with bump			
DAC Resolution	8-	8-bit			
Bias Voltage	0.2 to	0.2 to 1.2 V			
Measurement Method	Measure voltage with respect to GND	Measure voltage between 2 pins			
Voltage Measurement Range					
Input Buffer in Enable	0.2 to 1.2 V	-1 to +1 V			
Input Buffer in Disable	0 to 1.2 V	-1.2 to +1.2 V			
Measurement Accuracy	± 1.:	± 1.2 mV			
Sampling Rate	10	10 sps			
Application Example	Chemica	Industrial Sensor Chemical Sensor Biochemical Sensor			

REFERENCE CASES

Year	Application	Author	Affiliation	Journal	Reference
2023	Hydroquinone	Charles S. Henry	Colorado State University, US	Electroanalysis	Electroanalysis.2023;35:e202200552
2023	Cortisol	Fabiana Arduini	University of Rome Tor Vergata, Italy	Sensors and Actuators B: Chemical	Sensors & Actuators: B. Chemical 379 (2023) 133258
2023	Breast cancer sensor	Warakorn Limbut	Prince Songkla University, Thailand	Microchimica Acta	Microchimica Acta (2023) 190:232
2022	Formaldehyde sensor	Warakorn Limbut	Prince Songkla University, Thailand	Talanta	Talanta 254 (2023) 124169
2022	Multi-detection, COVID & antibiotic drug	Can Dincer	University of Freiburg, Germany	Materialstoday	Materials Today (2022) 61:129-138
2022	Leptospirosis	Sudkate Chaiyo	Chulalongkorn University, Thailand	Analytical Chemistry	Anal.Chem.(2022) 94: 14583-14592
2022	Heavy metals (As(III), Cr(VI), Hg(II), Pb (II), Cd (II))	Orawon Chailapakul	Chulalongkorn University, Thailand	Microchimica Acta	Microchimica Acta (2022) 189: 191
2022	Pesticides	Chanchana Thanachayanont	National Metal & Materials Technology Center (MTEC), Thailand	IEEE	19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2022)
2021	Hepatitis-B	Orawon Chailapakul	Chulalongkorn University, Thailand	Sensors and Actuators B: Chemical	Sensors & Actuators: B. Chemical 326 (2021) 128825
2021	NFC-based sensing technologies article	Firat Güder	Imperial College London, UK	Nature Reviews Materials	Nature Reviews Materials volume 6, pages (2021) 286–288